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Basalt Fiber Products

Engineered Composites
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Basalt fiber composite: A new engineered composite 
Ø Structural sustainability and safety (more attention). Includes: durability of structures, recoverability 

after disasters, use of new materials, and economical issues. 
Ø Financial loss due to corrosion of steel (sea water): up to 700 Billion USD every year (Wu et al., 

2012).

ü Basalt fiber: made 
from basalt rock 
melted at 1400ᵒC 
without any 
additives.

ü One of the best 
alternatives to steel. 

Basalt Fiber Reinforced Polymer (BFRP)
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Applications of FRP Composites

Basalt Fiber Reinforced Polymer (BFRP)
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General Applications
BFRP-Retrofitting

Ø Basalt Fiber Reinforced Polymer (BFRP) laminates can be installed in all types of structural applications 

including but not limited to flexural strengthening, shear strengthening, and axial confinement applications.

Ø Flexibility in usage is one of the most appealing aspects of the rehabilitation system

FRP used in an axial confinementFRP used in flexural strengthening FRP used in shear strengthening 
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7

No degradation at 250°C 
(Wu et al., 2011)

No obvious change close 
to Tg (Zhu et al., 2014) 

Degradable after 100°C 
(Zhang et al., 2016)

30% degradation at 250°C 
(Hamad et al., 2017) 

Elastic
 modulus 

58% degradation at 
250°C (Wu et al., 2011)

No obvious change 
close to Tg (Zhu et al., 

2014) 
12% degradation at 

250°C (Hamad et al., 
2017) 

Motivation

Ø Integral bridges experience thermal stresses throughout their service life.

Ø The thermo-mechanical behavior of the BFRP composites varies with the manufacturing. 

The absence of full investigations and understanding of the behavior of BFRP rebars at elevated 
temperatures raises the need for further research study to compliment the state-of-the-art and 
contribute to international standards on this subject.

Tensile 
strength

Elastic
 modulus 

Characterization at Elevated Temperatures

Basalt Fiber Reinforced Polymer (BFRP)
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Characterization at Elevated Temperatures: Prerequisite Tests
8 Properties of the BFRP Rod

Fiber volume fraction (vf  ), glass transition 
temperature (Tg) and resin decomposition 
temperature (Td) are not mentioned in the data 
sheet.

The SEM analysis is performed at a scale bar of 100-micron and 50-
micron.

Missing properties are required for the thermo-
mechanical study.

1. Determination of fiber content

• The scanning electron microscopy (SEM) analysis is 
conducted on 12 BFRP rod specimens.

• The average fiber content is found to be 80.1%.

Basalt Fiber Reinforced Polymer (BFRP)
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Characterization at Elevated Temperatures: Prerequisite Tests

2. Glass transition temperature 
(Tg)

Ø Dynamic mechanical thermal 
analysis (DMTA) test.

Ø Tg of the resin is found to be 
171.7ᵒC.

3. Resin decomposition 
temperature (Td)

Ø Thermo-gravimetric analysis (TGA) 
test.

Ø Td is found to be 423.7ᵒC.

Basalt Fiber Reinforced Polymer (BFRP)
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Characterization at Elevated Temperatures: Prerequisite Tests
4. Measurement of Elastic Modulus

Ø Using extensometer in tension test at 
elevated temperatures is challenging.

Ø Total elongation of BFRP rod sample 
can also be used if proved reliable.

Ø Total elongation-based approach is 
found reliable with 6.9% error. 

Tension test at ambient temperature

Basalt Fiber Reinforced Polymer (BFRP)
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Tension Test on BFRP at Elevated Temperatures
Total of 30 BFRP rod samples are tested, three identical specimens 
at each temperature level.

At 350°C onwards

Basalt Fiber Reinforced Polymer (BFRP)
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Tension Test on BFRP rod at Elevated Temperatures

Ø Load-deflection response is 
considered for evaluating the 
degradation in tensile strength 
and stiffness with temperature.

Ø Mild degradation up to 200ᵒC. 

Ø More pronounced degradation 
after 200ᵒC, up to 400ᵒC. 

Ø Total loss of tensile strength at 
450ᵒC.

Basalt Fiber Reinforced Polymer (BFRP)



Vasant Matsagar 13Advanced Engineered Composites in Protective Structures

Degradation in Tensile Strength 
and Tensile Modulus of Elasticity

Performance Assessment on 
BFRP Rod at Elevated 
Temperatures

Ø The BFRP rod, tested in the 
current study, has performed 
remarkably.

Tension Test on BFRP rod at Elevated Temperatures
Basalt Fiber Reinforced Polymer (BFRP)
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Ø The scanning electron microscopy (SEM) investigation is carried out on three rod samples tested 
at different temperature levels.

Ø The good bonding can be observed at room temperature (35ᵒC) where a bundle of fibers can be 
seen.

Ø The discreteness of fibers can be seen at 250ᵒC and 450ᵒC.

Ø The smooth surfaces of fiber, free of resin, can be seen at 450ᵒC.

Scanning Electron Microscopy (SEM) 
Basalt Fiber Reinforced Polymer (BFRP)
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15 Development of Constitutive Law
Three existing approaches as well as an initial proposed model are fitted with the experimental 
results.
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4. Proposed model

Basalt Fiber Reinforced Polymer (BFRP)
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Development of Constitutive Law
Implementation

The proposed model:
original, 
generic, and 
flexible.
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Split Hopkinson Pressure Bar (SHPB)
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Ø Bar Diameter = 76 mm, 
Ø Bar Length = 3048 mm, 
Ø Strain Rate Achieved = 100 – 1400 /s

Design-development of triaxial large diameter SHPB system for structural materials
Φ 76

3048 3048 3073.4

Axial Pressure 
Cell

Transmission Bar

Lateral Pressure 
Cell

Incident Bar Gas Gun Barrel Gas Gun

Supporting Stand

457.2

All dimensions are in mm
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impossible 
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Conventional cross 
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Impact Dynamic Quasi-static Creep and 
stress 

relaxation 

Plate im
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Taylor im
pact 

H
opkinson B

ar 

Inertia important Inertia negligible 

Strain-rate regimes 

Uniaxial Split Hopkinson Pressure Bar

20 m 25 m

25 m

Ux = 0, URy = 
URz = 0
(Both Sides)  

Uz = 0, URx = 
URy = 0
(Front and 
Back)  Ux = Uy = Uz = 0,

URx = URy = URz = 0
(Bottom)

12.5 m

 
(a) Typical geometry, mesh and boundary conditions for tunnel in soil. 

 
(b) Enlarged mesh for tunnel with tunnel lining. 

 

 

(c) Tunnel lining and reinforcement details. (d) Explosive inside tunnel. 
 

12 mm diameter 
bar @ 250 mm 

c/c

18 Nos. 10 mm 
diameter bar

120 mm
RC Lining Thickness, tw



Engineered Composite Laminates / Plates
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Here, Ni and Mi are resultant forces and moments on the laminate, εj and κj are
mid-plane strains and curvatures, Aij extensional stiffnesses, Bij coupling
stiffnesses, and Dij bending stiffnesses.

Engineered composite: laminated composite plate 



Computational Modeling of Engineered Composite Plates
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Constitutive Relation of laminate (using first order 
shear deformation theory):

Finite element (FE) formulation of composite plate in thermal environments
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Thus, governing equation of composite plate in elevated temperature
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Here, N: shape function, 𝑡,,: total number of nodes in an element, ne: total number 
of elements, 𝒅tnn: global displacement vector, and q: external dynamic load vector
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Midplane surface

Concrete-FRP laminate interface

FRP laminates Concrete

Pressure

𝑃12

𝑃2
Time

Blast wave

Positive phase

Negative phaseArrival time 𝑡3

FRP Composite Plate for Strengthening 
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Computing blast wave 
parameters Obtaining Blast Wave Profile Computing ABD matrix using 

Classical Lamination Theory
Computing the dynamic 

response of the central node

Application of the FRP composite plate for strengthening concrete against blast load  



FRP Composite Plates under Blast load
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Validation with 3D-FE analysis for different radial distance from explosion center
at R = 5 m at R = 7.5 m

at R = 15 mat R = 10 m

Radial distance (R)

W

Explosion

FRP Laminated 
Composite

Blast wave

Explosive weight (W)
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Center node displacement of the concrete 
wall with CFRP symmetric angle-ply laminate 
with varying number of lamina layers.

Number of LayersStacking Sequence

Center node displacement of the concrete wall with 
CFRP laminate with configurations,

C1 - (0°/90°/45°/-45°/0°/90°)ₛ 
C2 - (0°/45°/-45°/90°/0°/45°)ₛ
C3 - (0°/90°/0°/90°/0°/90°)ₛ
C4 - (45°/-45°/45°/-45°/45°/-45°)ₛ.

Center node displacement of the concrete 
wall with CFRP, AFRP, and GFRP laminates 
with configuration, 
(0°/90°/45°/-45°/0°/90°)ₛ.

FRP Materials

FRP Composite Plates under Blast load
Blast-induced response of concrete wall for varied materials properties and geometries FRP 
composite
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Thickness of Concrete Wall Weight of Explosive

Blast-induced response of RC walls for varied thickness and explosive weight

Center node displacement of the concrete wall with 
varied thicknesses.

Center node displacement of the concrete wall with 
varied explosive weights.

FRP Composite Plates under Blast load
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Damage Evolution of FRP Composite Plates under Blast
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(4) Hoffman Failure Criterion

Different Failure Criteria and failure envelops

Failure envelopes of AS4/3501-6 CFRP composite under high rate 
transverse normal and shear stress by Daniel et al. (2011)

Normalized theory

Failure envelopes for GFRP by 
Alshurafa et al. (2018)
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Fiber damage in tension (           )11 0s ³

Fiber damage in compression (𝜎!! <
0)

Matrix damage in tension (𝜎"" ≥
0)

Matrix damage in compression (𝜎"" <
0)

Damage Evolution of FRP Composite Plates under Blast

Ø Hashin’s Damage Failure Criterion
Damage evolution in FRP composite plate

𝑞4 = 3447 kPa, α = 2, 𝑡4 = 0.1 𝑞4 = 6894 kPa, α = 2, 𝑡4 = 0.1 s

At time instant = 9 ms At time instant = 1.875 ms

𝑞(𝑡) =
𝑞5 1 −

𝑡
𝑡4

𝑒
6*
*2  for 𝑡 ≤ 𝑡4

0 for 𝑡 > 𝑡4	
𝑞4 = 3447 kPa, α = 2, 𝑡4 = 0.1

Applied idealized blast load



FRP and Foam Sandwich Composite under 
Blast
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Deformation shapes of sandwich panels for W = 2.5 kg and R = 1 m

Time instant = 2.17 ms Time instant = 3.09 ms Time instant = 5.26 ms
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Experimental Investigations on BFRP-Beams
Prestressing Application                                                          Construction of Beams

Ø Already developed anchors are used.
Ø Hollow load cells are used.
Ø 5-mm strain gauges.

Ø Three different grades of concrete are used.

Basalt Fiber Reinforced Polymer (BFRP)
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Four-Point Bending Test on Beams

• Beams are instrumented and  
tested.

• The instrumentation includes 
the use of:

1. load cell,

2. strain gauges,

3. crack transducer, and

4. linear variable differential 
transformer (LVDT).

Basalt Fiber Reinforced Polymer (BFRP)
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Experimental Investigations on BFRP-Beams: Experimental Results
Failure Mode and Crack Pattern

• Failure of beams in Series 1 and 
2: crushing of concrete.

• Failure of beams in Series 3 and 
4: rupturing of BFRP rebars/ 
tendons.

• Beams in Series 1, 2, and 3: 
excessive cracking, which is 
desirable, 

• Beams of Series 4: extremely few 
numbers of cracks.

Basalt Fiber Reinforced Polymer (BFRP)
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Flexural Analysis of BFRP-Beams: Finite Element Analysis (FEA)

• Concrete is modeled as 8-
node linear brick elements 
(C3D8R).

• FRP bars are modeled using 
2-node linear truss elements 
(T3D2).

• The mesh size is set to 30 
mm.

• The analysis is run in static 
step up to failure.

Basalt Fiber Reinforced Polymer (BFRP)
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Flexural Analysis of BFRP-Beams: FEA results

The FEA results are in a good agreement with the 
experimental findings.

• Compression-controlled failure in Series 1 and 
tension-controlled failure in Series 3.

Basalt Fiber Reinforced Polymer (BFRP)



Reinforced Concrete (RC) Panel with BFRP Rods
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100 mm

8 mm ϕ @ 120 mm c/c

z

x

y

• Dimensions of Panel: 1 m Î 1 m Î 0.1 m

• Reinforcement: Basalt fiber reinforced polymer 
(BFRP) 

• Diameter of reinforcement: 8 mm 

• Location of reinforcement: Distance of 50 mm 
from top of the panel (in depth direction) and at a 
distance of 200 mm center to center with concrete 
cover of 30 mm

• Grade of Concrete: M50

• Boundary condition: Simply supported on all four 
corners

• Blast type: Contact blast

• Explosive type: TNT



Reinforced Concrete (RC) Panel with BFRP Rods
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Reinforced Concrete (RC) Panel with BFRP Rods
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Displacement time history between present LS-DYNA® 

simulation and the results reported by Wu et al. (2009) 

and Jain et al. (2015)
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x
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z

3 m

1 kg TNT

2 m x 1 m x 0.1 m
Reinforced concrete slab

Peak reflected and incident pressure between studies 

reported by Wu et al. (2009), UFC-3-340-02 (2008), and 

values obtained by LS-DYNA® simulation

Particulars

Peak reflected 
pressure values 

(MPa)

Peak incident 
pressure values 

(MPa)
Wu et al. (2009) 0.3 Not reported

UFC-3-340-02 (2008) 0.32 0.119
Present LS-DYNA®

simulation
0.33 0.118



Reinforced Concrete (RC) Panel with BFRP Rods
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Position of camera, vibration mobile, and TNT explosive during the field test

(a) (b) (c)

3 blocks of TNT (1.35 kg) 6 blocks of TNT (2.7 kg) 10 blocks of TNT (4.5 kg)

Arrangement of TNT explosive

Reinforced concrete panel 
(1 m Í 1 m Í 0.1 m)

Vibration Mobile

Camera-2

Camera-1

1.7 m

Location of TNT explosive Supports

30 cm



Reinforced Concrete (RC) Panel with BFRP Rods
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Field test of BFRP reinforced concrete (RC) panel subjected to 1.35 kg TNT charge weight under contact blast



Reinforced Concrete (RC) Panel with BFRP Rods
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Field test of BFRP reinforced concrete (RC) panel subjected to 4.5 kg TNT charge weight under contact blast



Reinforced Concrete (RC) Panel with BFRP Rods
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Finite element model prepared in LS-DYNA® for contact 

blast type simulation

TNT
(20 mm)

RC Panel
(10 mm)

Support

Air domain 
(20 mm)
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Steel- and BFRP-reinforced concrete panel (a) displacement time history (b) peak center point displacement
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Blast wave propagation at different time interval for the panel subjected to 3 kg TNT blast load

(a) t = 0 s (b) t = 3E-4 s (c) t = 7.5E-3 s

(d) t = 15E-3 s (e) t = 22.5E-3 s (f) t = 30E-3 s
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Damaged state of BFRP-RC panel subjected to different blast loads 

in case of field test and numerical simulation

Numerical simulation on BFRP-RC panel
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Dimensions of the prestressed concrete (PSC) wall (a) original (b) blast/impact retrofit
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Section of the reinforced concrete (RC) wall (a) top 

view (b) front and side view
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Geo-Metro 
car model C2500 pickup truck

Threat parameter: (PSC wall subjected to vehicle with explosive)

(a) Experimental setup of crossbow system with CFRP 
specimen in position, (b) typical sketch of the crossbow 
configuration employed for high strain rate tensile testing
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Mesh convergence study for a wall subjected to blast load with respect to effective stress and displacement time history
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PSC wall subjected to impact with car and the corresponding effective stress generated in the wall
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Comparison of normalized deflection time history 

between results reported by Neuberger et al. (2009) and 

present LS-DYNA® simulation
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Study on different lacing configurations based on the effective stress, average stress, and displacement time history
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The three-dimensional (3D) finite element (FE) model of carbon fiber-reinforced polymer (CFRP) and extruded 

polystyrene (XPS) foam sandwich modular structure
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Ø Engineered (lightweight) composite materials, i.e., fiber reinforced laminated composite plates, FRP composite 

sandwich panels, etc. are efficient in blast resistant design.

Ø Concrete walls with fiber reinforced composite or FRP strengthening are better resilient against blast loads.

Ø Basalt fibers reinforced polymer (BFRP) composite can be used for resilient infrastructure design, specifically 

industrial structures where close-in detonation or contact blast scenario exists.

Ø Fiber reinforced composites can be efficiently used for retrofitting concrete slabs/ panels/ walls, beams, and 

columns more effectively with prestressing.

Ø In future: high strain rate characterization of the composite material constituents and field testing at close-in 

detonation condition and contact blast will be useful for numerical validation.
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